Double heterojunction nanowire photocatalysts for hydrogen generation.
نویسندگان
چکیده
Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.
منابع مشابه
Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor
In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...
متن کاملC2nr11952h 1515..1521
We report the fabrication of a three dimensional branched ZnO/Si heterojunction nanowire array by a two-step, wafer-scale, low-cost, solution etching/growth method and its use as photoelectrode in a photoelectrochemical cell for high efficiency solar powered water splitting. Specifically, we demonstrate that the branched nanowire heterojunction photoelectrode offers improved light absorption, i...
متن کاملTwo-dimensional layered composite photocatalysts.
Two-dimensional (2D) layered nanostructure composites are promising candidates for conducting high-performance energy conversion and environmental remediation. The construction of 2D layered composite photocatalysts can generate many unique properties that do not exist in other kinds of semiconductor composite photocatalyst, which are beneficial for photocatalytic performance enhancement, band ...
متن کاملHeterostructured Ceramic Powders for Photocatalytic Hydrogen Production: Nanostructured TiO2 Shells Surrounding Microcrystalline (Ba,Sr)TiO3 Cores
Heterostructured photocatalysts were prepared to have nanostructured (ns) TiO2 shells surrounding microcrystalline (mc) cores of (Ba,Sr)TiO3. The as-prepared heterostructures were annealed between 400°C and 600°C to improve crystallinity and core-shell interfacial bonding. X-ray diffraction, electron microscopy, and gas adsorption measurements demonstrated that 50 nm thick shells composed of na...
متن کاملGraphene-Based Photocatalysts for Hydrogen Generation.
Graphene-based photocatalysts have gained increasing interest as a viable alternate to increase photocatalytic H2 production performance in converting solar energy into chemical energy. The use of graphene to enhance the efficiency of photocatalysts has been proved due to its unique two-dimensional conjugated structure and electronic properties. In this Perspective, we have summarized the recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2014